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We show how one can interpret the Lagrangians defining quantum and scalar 
electrodynamics as asymptotic descriptions of certain relativistic transport- 
theoretic Lagrangians. It is suggested that the gauge parameter, regularizations, 
and renormalizations may have their origins in the way such transport-theoretic 
Lagrangians are asymptotically approximated. As an alternative to the Higgs 
mechanism the interaction with Lorentz-invariant ground states of vector bosons 
is put forward. 

1. INTRODUCTION 

The Lagrangian density ~ is used by contemporary theories of funda- 
mental interactions as the basic description of the physical world in terms 
of its state ~ .  The Lagrangian formulation most clearly exhibits all global 
and local symmetries of a theory and provides a common starting point (i) 
for classical field theories whose equations of motion are given by Hamilton's 
principle of stationary action 

~I[~] = 0, I [~]  = dt ~ ( ~ ,  V~) dg (1.1) 
1 R3 

and (ii) for relativistic quantum field theories constructed through the path- 
integral method using Feynman's path integral 

f ~  exp{(i/h)I[~] } (1 . 2 )  

or through canonical quantization, which both imply the Feynman graph 
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expansions. Now, the Lagrangians of quantum field theories have to be 
amended by the rules governing the gauge parameter, regularizations, renor- 
malizations, and omissions of vacuum-vacuum subdiagrams. So, one can 
argue that they are actually just asymptotic approximations to some underlying 
Lagrangian that has been simplified by effective parameters (masses and 
coupling constants) standing for certain interactions that should, therefore, 
be omitted from theories based on asymptotic Lagrangians. 

Now the question arises of how to arrive at this underlying Lagrangian-- 
provided of course there is one. According to Feynman, sound theories the 
limits of which are quantum field theories are still an open question of 
theoretical physics (Mehra, 1994). It was suggested, e.g., by Bjorken and 
Drell (1965) already 30 years ago that the quantum field theories may not 
give an adequate description of the physical world at distances smaller than 
some characteristic length. To obtain an idea how to improve on the conven- 
tional Lagrangians of quantum field theories we follow a suggestion by 
Feynman et  al. (1965) and reason on the analogy of the kinetic theory of 
gases, where phenomena smoothed over the time and space variable may be 
adequately described by the partial differential equations of fluid dynamics 
in terms of certain fields of the time-space variable x E IR h3. On the other 
hand, a more precise description can be given in terms of the single-particle 
distribution function that depends on the time-space variable x and four- 
momentum variable p ~ IR 1,3, and satisfies an integrodifferential transport 
equation (Williams, 1971; de Groot e t  al . ,  1980). We have shown (Ribari6 
and Su~ter~i6, 1995) how one can construct covariant linear integrodifferential 
transport equations that (a) imply in the strong-scattering asymptote the 
Klein-Gordon, Dirac, and Proca partial differential equations of quantum 
field theories, and (b) display faster-than-light effects, though they do not 
propagate signals faster than light. In what follows we will consider how 
one can derive from transport-theoretic Lagrangians the conventional Lagran- 
gians of quantum and scalar electrodynamics. 

2. TRANSPORT-THEORETIC LAGRANGIANS 

Within the proposed transport-theoretic framework, we presume that the 
state of a physical system is described by a relativistic field ~(x, p) of two 
independent four-vector variables: the time-space variable x =- (ct, r) E IR 1'3 
and the four-momentum variable p ---- (p0, p) E IR1,3; so to say, we assume 
that physical space has 4 + 4 dimensions. We assume that the Lagrangian 
density ~s of a physical system maps the state ~(x, p) and its first-order 
derivative V~(x, p) with respect to the time-space variable x into a real 
relativistic-scalar field of x E IR 1,3. We take that the Lagrangian density 
is a sum 
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~ (  ~tr VXI~) = ~ f  Jr- ~-(~i (2.1) 

of the free and interaction parts. The free part ~ f  completely describes the 
free states ~f(x, p) that are taken as the primary concept analogous to the 
concept of free bodies described by Newton's first law. All differences 
between states ~(x, p) and the free states v~f(x, p) are modeled and explained 
by the interaction part ~i  characteristic of the physical system considered. 

2.1. Lagrangian Density ~f of a Free State 

In transport theory a free state ~Iff(x, p) is assumed to satisfy the covariant 
equation of motion 

p'~X~f(x, p) = O, with p 'V -- pO 1 0 7 ~  + p-V (2.2) 

being the covariant substantial derivative (de Groot et al., 1980). This equation 
is an analog to Newton's first law, since a solution to (2.2) for pO r 0 in 
terms of its value ~f(cto, r, pO, p) at t = to reads 

qtf(ct, r, pO, p) = qtf(Cto, r - cp(t - to)lp ~ pO, p) (2.3) 

Any state ~(x,  p) that does not depend on the time-space variable is a free 
state. A plane wave 

q*pw(X, p) =- ~o(p)d p'~ with alr0(p) = 0 if [ p 0 1 2  _ [p[Z r 0 

(2.4) 

is also a transport-theoretic free state, and it satisfies the same wave equation 

V-Vqtpw(X, p) = 0 (2.5) 

as the free massless fields of quantum field theories. If we interpret the state 
�9 (x, p) as describing at x a certain property of pointlike entities characterized 
by their four-momentum p e IR 1,3, the relation (2.3) tells us that in a free 
state ~f(x, p) this property is streaming with velocity cplp ~ ~ IR3; note that 
the speed clplp~ is not bounded. If we take that ~f(xl, p~) :/: 0 (= 0) signifies 
that such pointlike entities with four-momentum p = p~ are present (absent) 
at x = xl, then in the case of a spatially localized initial free state, say ~e(Cto, 
r, p) = 0 if Irl > R0, the relation (2.3) points out that in a free state they 
are spreading with a speed clpllp~ that may be arbitrarily high. So we could 
say that in the case of a free state there are pointlike entities with arbitrary 
four-momenta p that are streaming through the three-dimensional space IR 3. 
In relativistic kinetic theory one assumes that p0 > 0 and Ipl 2 < [p012, so 
that the speeds clp/p~ < c; here p0, [p[2 ~ IR and so the speeds clplp~ 
[0, ~). 
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To construct a Lagrangian that implies (2.2), we use a mapping (~ l~ ' )p  
of any two states ~(x, p) and ~ '(x,  p) into a complex function o f x  E IR l'3. 
We designate ( ! I ~ )p as a scalar product with respect to the independent four- 
momentum variable p and assume that { i I ~ )p has the following properties: 

(i) It is local with respect to the time-space variable x and does not 
depend explicitly on x, i.e., for any a ~ IR 1'3, 

(a'It(x' P)] ~It'(X' P))P]x=a = (~(a,  p) l~ ' (a ,  p))p (2.6) 

( ~ ( x  + a, p ) ] ~ ' t x  + a, p))p = (~(x, p)l , I , ' (x ,  P))plx-~x+a 

(ii) It is bilinear, i.e., for any three states ~(x, p), ~ ' (x,  p), and ~"(x, 
p) and for any two complex constants c', c" E C, 

+ c",I% = b + b 

( * l* ' ) p  = ( * ' l * ) *  (2.7) 

with the asterisk denoting complex conjugation (so (grl~)p is real, but not 
necessarily nonnegative). 

(iii) It is a relativistic-scalar field of the time-space variable x, i,e., if 
the states �9 and ~ '  transform under Lorentz transformations A as, say, 

A ~  - (A~)  (A-~x, A-~p) (2.8) 

then for any A, 

(Aq~IA*')p = (*(x, p)]*'(x, p)}plx~A_lx = A((g2"l~tt')p ) (2.9) 

(iv) It is such that 

= 0 (2.10) (~ ' l~ )p  = 0 V ~ '  implies 

and 

(~ [  ( a . p ) ~ ' } e  = - ((a.p)~t'l'I~') p 

where a.p -- a~ ~ - a.p. 

V a ~ IR ~'3 (2.11) 

Using the above properties of the scalar product (~ I i )p, one can show 
that the covariant equation of motion (2.2) of a free field is the Euler-Lagrange 
equation of the Lagrangian density 

~ee('I', v ' I O  - ~ ( ' ~ l p - v ' ~ > p  = (qSlp-V'I '>  p - � 8 9  p (2.12) 

where ~t denotes the real part. So we take (2.12) as the free part ~ f  of the 
transport-theoretic Lagrangians (2.1) we are going to consider. Note that 
2ef(~, V~)  defined by (2.12) is a relativistic-scalar field of  x, i.e., for any A, 
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~/~f(Aat t, VAq 1") : ~ f (x I t ,  V~I~)[x.__>A-I x 
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(2.13) 

2.2. Interaction Part Ss of  the Lagrangian 

In what follows we assume that the interaction part ~ of the transport- 
theoretic Lagrangian ~ is such that 

~ i  : ~i(~I'r) ~ ~1(~I'r) -t- ~2 (~ t  r, ~i f)  + ~3(~I  t, ~, ~I r) (2.14) 

+ ~s ~,  ,t,, ,t,) 

in which the operators 2gl(~l), 2e2(~, ~2), 5~3(~1, ~2, ~3), and ~s ~a, 
~3, ~4) have the following properties: 

(i) They map states ~ ,  ~z, ~3, and ~4 into complex relativistic-scalar 
fields of the time-space variable x e IR 1'3 that do not depend on the four- 
momentum variable p; e.g., in the case of the trilinear term ~3, for any A, 

2s A~2, A'Ir3) = ~s ~2, ~3)[x~A-lx = A(~3(~,  ~2, ~3)) 
(2.15) 

(ii) ~x(~), ~2(~,  ~),  ~g3(q t, q~, ~) ,  and ~4(~,  ~ ,  q~, ~ )  are real for 
any ~ .  

(iii) They are totally symmetric with respect to their arguments; e.g., in 
the case of the quadrilinear term, 

~4(a'Ifl ,  a'It2, ~IF3, ~It4) : ~4(a.I.t2, ~I/1, ~I/3, ~I.t4) = . . .  -~- ~4(a.l~t4, ~[-t3, a-IY2, ~I-tx) 

(2.16) 

This requirement [that, e.g., ~ 2 ( ~ ,  ~2) is the symmetric extension of ~2(xI t, 
q~)] simplifies subsequent results and imposes no additional restrictions on 
the interaction part ~ .  

(iv) They are linear in each argument; e.g., in the case of the bilinear 
interaction term ~2, for any states q~n and for any real constants c,, 

j ,k 

(v) They are local with respect to the independent variable x and do not 
depend explicitly on x, i.e., they satisfy relations analogous to (2.6). Thus, 
~ ,  ~ ,  ~3, and 594 represent a kind of contact interactions in a homogeneous 
time-space IR t,3, since the values of, e.g., ~2(qt~, qtz) at x = x~ and of 
~2("kI'r[, ~f;) at X = x2 are equal when ~a(x = x~, p) = ~[(x = x~ p) and 
a'~t2(X = .X1, p) -- xP~(x = xz, p). 



576 Ribari~ and Su~ter~i~ 

As a consequence, Lagrangian density SE is form-invariant: (a) under 
Lorentz transformations, 

5~(AW, VAW) = ~(W(x, p), VW(x, p))[x~A-lx V A (2.18) 

and (b) under time-space shifts, 

~(W(x  + a, p), VW(x + a, p)) (2.19) 

= ~(W(x,  p), VW(x, P))L.-.Cx+a ~ a ~ IR 1'3 

2.3. The Euler-Lagrange Equations of  the Lagrangian 
~.(~f(W, V'tI 'f) "Jr" ~ i ( l I  i )  

By Hamilton's principle, the Euler-Lagrange equations for state W read 

EL(W; air') = 0 V W' (2.20) 

where 

EL(W; air') - (W'lp.VW) p + (p .vwIw')  p + .~l(XI "rt) -}- 2~2(W', air) 

+ 3~3(W', air, W) + 4~4(W', air, W, W) (2.21) 

The zero state W(x, p) --- 0 is a solution to the Euler-Lagrange equations 
(2.20) if and only if there is no linear term, i.e., 5s = 0. If both W(x, p) and 
-W(x, p) are solutions to (2.20), then, for such a state air, by (2.7) and (2.17), 

~cE~(W') + 3cE3(W ', air, air) = 0 V air' (2.22) 

The Euler-Lagrange equations (2.20)-(2.21), (2.6), (2.7), and (2.11) 
imply that any solution air to (2.20) satisfies the covariant continuity equation 

iV'{WIpW) e = ~Et(iW) + 2~2(iW, air) + 3~Es(iW, air, a i r )  (2.23) 

+ 4~4(iW, air, air, air) 

2.4. Shifted Lagrangian 

For a given reference state Wr(x, p) we define the difference 

Wd(x, p)  - W(x, p)  - wr(x, p)  

and write the transport-theoretic Lagrangian 

~ (  %if, ~7~I'r) ~--" ~(Xlfr, ~7~trr) "~ ~'~['~(XlIr]pXI~d)p + ~d 

in which the shifted Lagrangian density is 

(2.24) 

(2.25) 
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~d(~Ifd, V~I~d; ~ r )  ~ ~f(~I/d, V~t/d) "q- ~id(~I/d; ~I'Fr) (2.26) 

with the interaction part 

fs XItr) -- EL(XItr; ~d) 

=~2d(XlYd, XlYd; ajar) -~- y2(XIYd, XItd) -1- 3~.c~3(Xlrr, Xt/d, Xlfd) 

+ 6.~4(XI~r, xltr, a]?d, XItd) 

~3d(~d, ~d, ~d; qJ~) =-- ~s q~d, ~d) + 43~a(~, ~d, ~d, q~) (2.27) 

Here the state ~d(X, p) is the independent dynamical variable of the shifted 
Lagrangian ffa(~a, V~d; ~ )  and ~(x ,  p) is a given reference state, i.e., a kind 
of parameter. The shifted and original Lagrangians ~a and ~ are physically 
equivalent. In particular, if ~d(X, p) is a solution to the Euler-Lagrange 
equations of the shifted Lagrangian ~d, then the s u m  ~ r  + XI/d is a solution 
to the original Euler-Lagrange equations (2.20). 

The shifted Lagrangian ~d has, in particular, the following properties: 
(a) The free part of ffd is the same as in the original Lagrangian ~.  (b) The 
interaction part ~id has no linear term, i.e., fs -- 0, if ~(x,  p) is a solution 
to the original Euler-Lagrange equations (2.20). (c) Even if the original 
Lagrangian ~ did not have the linear and bilinear terms fs and ~2, the 
shifted Lagrangian ~a would in general acquire linear and bilinear interaction 
terms =~Id and ~2d from ~3 and/or ~4 terms. (d) The quadrilinear interaction 
term ~4 of the original Lagrangian ~s may contribute to the linear, bilinear, 
and/or trilinear terms ~s 5s and ~3d. (e) The quadrilinear interaction terms 
of ~ and ~ are the same. Consequently, the shifted Lagrangian ~a may 
have linear, bilinear, and trilinear interaction terms, though they are absent 
in the original Lagrangian ~s 

2.5. Inherited and Explicitly Broken Symmetries of Lagrangians 

Suppose that the original Lagrangian ~ exhibits a certain symmetry, say 

S - ~ ( S q  ~, VS~) = ~(qt, V~) V �9 (2.28) 

where S is a linear invertible transformation of states q~(x, p) and of scalar 
fields of x such that for any two states at'~ and ~2, 

S(clq~l + c2XIt2) = clS~l + c2S~2 V cl, cz ~ IR 

= 

p - V S ~  = Sp-V~ (2.29) 
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Note that (2.28) with (2.29) is equivalent to 

S - l ~ n ( S X t f  1 . . . . .  SxILrn) = ~n(Xt'rl ,  . . . ,  XlYn) , n = 1, 2, 3, 4 
(2.30) 

by (2.1), (2.12), (2.7), (2.14), and (2.17). When W is a solution to the 
Euler-Lagrange equations (2.20), then one can verify that also S~  is a 
solution to the same Euler-Lagrange equations (2.20). In particular, if 
W(x, p) is a solution to (2.20), then for any Lorentz transformation A and 
time-space shift a ~ IR 1'3 also the state (AW)(A-Ix + a, A-lp) is a solution 
to (2.20), by (2.18)-(2.19). Further, if Wd is a solution to the Euler-Lagrange 
equations of ~d, then SWr + SW~ is a solution to the original Euler-Lagrange 
equations (2.20). 

When the original Lagrangian ~ exhibits a certain symmetry (2.28), 
then it is of interest to know whether the shifted Lagrangian ~d derived from 
it exhibits the same symmetry with respect to the independent dynamical 
variable Wd, or if this symmetry is explicitly broken. In general the symmetry 
will be explicitly broken; e.g., if ~1 = 0 and ~3 = 0, then ~ is invariant 
under the substitution of W by -W, but ~o will be invafiant under the 
substitution of Wd by -Wd only in particular cases. However, one can 
show that 

s - l ~ d ( S X l t d ,  VSxl, rd; SXttr) = ~d(XItd,  ~Txi-rd; Xitr) V Xi'td, Xtt r (2.31) 

by (2.26)-(2.30), (2.12), (2.7), and (2.14). Thus, if Wd is a solution to the 
Euler-Lagrange equations of the shifted Lagrangian ~a(Wd, VWd; Wr) for a 
given reference state Wr, then SWd is a solution to the Euler-Lagrange equa- 
tions for Wd of the Lagrangian ~d(W, VWd; SWr). When the reference state 
Wr is such that 

,~id(at-rd; Sat/r)  -= ~id('tI~rd; ~I/r) V ~d (2.32) 

then the shifted Lagrangian ~d(~d, V~d; ~r) of the independent dynamical 
variable qtd inherits the symmetry (2.28) of 5f, by (2.26) and (2.31). In 
particular, we have (2.32) when the reference state q~ is invariant under 
symmetry S, though S ~  = ~r  is not a necessary condition for (2.32). For 
example, the s t a t e  aI-r r ~ I~ exp(ip.x), ~J being a constant bispinor, is neither 
invariant under time-space shifts nor under Lorentz transformations A, but 
~id(qtd; ~r) is when it depends on the reference state ~r  only through the 
scalar product q~r~. 

2.6. The Basic Lagrangian 

In the Euler-Lagrange equations (2.20), the terms ~1(~ ' )  and 2~2(~' ,  
~ )  describe the independent sources and interactions with an underlying 
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medium whose properties do not depend on ~(x, p), respectively. So it 
makes physical sense to assume that these two terms are absent from the 
Euler-Lagrange equations that give a complete description of the physical 
world, so that, were it not for the self-interaction terms ~3 and ~s the state 
of the physical world would be a free field ~f(x, p). Thence, we put forward 
the hypothesis that in the case of the transport-theoretic Lagrangian ~s + ~i 
that gives a complete description of the basic physical phenomena, 

~ l ( ~ )  - 0 and Ss W) --- 0 (2.33) 

i.e., we hypothesize that all physical phenomena are due solely to the free 
streaming and self-interaction described by ~f and ~3 + ~4, respectively. 
According to hypothesis (2.33), a Lagrangian density with linear and/or 
bilinear interaction terms can be interpreted in view of (2.26)-(2.27) as a 
shifted Lagrangian ~d whose linear and/or bilinear terms originate from the 
interaction of the state ~a with some reference state q~r 

2.7. Ground  State 

On assuming (2.33), it is physically convenient to generate the bilinear 
term ~g2d (if needed) by using as a reference state ~r(X, p) a ground state, 
i.e., a particular reference state XIt r such that: 

(i) It is invariant under Lorentz transformations and under time-space 
shifts, i.e., (A~r)(A-ix + a, A-lp) = xlt (x, p) for all A and for all a ~ IR 1'3. 
Thence, a ground state does not depend on the time-space variable x, say 

XItr(X, p )  = ~tg(p)  and (A~g)(A-lp) = ~g(p) (2.34) 

i.e., a ground state is a free state. As a consequence, the shifted Lagrangian 
~d(~d, VWd; ~g) is invariant under Lorentz transformations and under time- 
space shifts, by (2.18), (2.19), and (2.32). 

(ii) It is a solution to the Euler-Lagrange equations (2.20), i.e., 

3~/~3(xI ~', a~I~g, Xt~g) q- 4~4(~' ,  ~I~g, XI~g, aj~tg) = 0 V ~ '  (2.35) 

by (2.21), (2.33), and (2.34). Thence, by (2.27), the linear interaction term 
~ld is absent from the shifted Lagrangian ~d(~d, V~d; ~g), i.e., 

~ld(~d; ~g) = 0 V ~d (2.36) 

SO that it is stationary in the following sense: ~d(e~d, VeWd; ~g) = O(e 2) 
as e --~ 0. 

Requirement (2.34) that the ground state ~g(p) is invariant under proper 
orthochronous Lorentz transformations A implies: 

(i) When the states q~(x, p) are complex (real) relativistic-scalar 
fields, then 

~go(P) =- f(P'P) (2.37) 
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is a ground state for any complex (real) function f(y) of y ~ IR such that 
(2.35) holds. 

(ii) When the states at'(x, p) are spinor fields, then it seems that only 
the zero ground state ~g(p) = 0 can satisfy (2.34). 

(iii) When the states ~(x, p) are complex (real) four-vector fields, then 

~g~(p) ---- f (p .p)p  (2.38) 

is a ground state for any complex (real) function f(y) of y ~ IR such that 
~g~(p) is a solution to (2.35). Thus, in contradistinction to conventional 
quantum field theories, within the transport-theoretic framework not only 
scalar bosons, but also four-vector bosons may have a Lorentz-invariant 
nonzero ground state. 

2.8. Quartic Vertices as the Starting Point 

In the kinetic theory of gases, interactions are due to collisions without 
absorption between two or more particles. This fact could suggest that in 
quantum field theories quartic vertices are actually basic and, therefore, any 
three-leg vertex is actually a four-leg vertex with one of its legs standing for 
interaction with a constant Lorentz-invariant bosonic ground state and there- 
fore suppressed and taken into account by the coupling constant of the 
resulting three-leg vertex. If so, the interaction part ~ of the basic transport- 
theoretic Lagrangian ~f  + ~i underlying quantum field theories has only a 
quadrilinear interaction term ~4(~, ~ ,  ~ ,  ~ )  and 

~1(~) -- 0, ~2(~,  ~ )  -= 0, ~3(~,  q~, q~) = 0 (2.39) 

In such a case, the quadrilinear term ~4 is the origin of any linear, bilinear, 
and trilinear interaction terms ~ld, ~2d, and ~3a the shifted Lagrangian ~f  
at- ~ i d  may have. 

If for any complex constants Cl, c~ c3, and c4, 

~4(Cl~I/ '  C2aJL, C3~, C4at, r) - -  I * :~ - -yfft(Cl c2 c3c4 + c~c2c~c4 (2.40) 

4- C ~ C 2C 3C ~ ),:~ 4 ('(1 t, "fit l, "fix t, "tit) 

then the Lagrangian S~ = S~f + ~ 4  is invariant under a phase change, i.e., 

~(ei'~xp ", Vei'~xP ") = ~ ( ~ ,  VxP') V (x ~ IR (2.41) 

and (~lp~)p is a conserved current when �9 is a solution to the Euler- 
Lagrange equations (2.20), by (2.40) and (2.23). In general, a modified 
Lagrangian density ~d will not inherit the symmetry (2.41); it will be hidden 
in the relation 
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~d(eiaqd'd, Veiaff2'd; e i '~O = ~s V~d; ~I/r) V Ot ~ IR (2.42) 

by (2.31). Thus one can use the proposed hypothesis (2.39)-(2.40) to give 
a physical interpretation of the invariance of Lagrangians ~QED and ~s 
of quantum electrodynamics (3.1) and of scalar electrodynamics (3.16) under 
the substitution of A by ei'~A, e by e-i~ d? by ei~'d?, and t~(x) by ei'~(x), a 

IR; also, the Lagrangian of the standard model can be interpreted so 
that it exhibits an analogous invariance that can be interpreted as a broken 
symmetry (2.41). 

3. QUANTUM FIELD THEORIES 

3.1. Quantum Electrodynamics 

Quantum electrodynamics of charged spin-1/2 particles is characterized 
by the Lagrangian density 

~QED "~- --  l l V  ~) A - (V | A ) t ]  2 - -  )[V.AI 2 + ~ {~[i~/~Vw (3.1) 

- e'y"A, - m]t~} 

in which ~(x) and A(x) are complex, bispinor and four-vector fields of the 
time-space variable x ~ IR 1'3, IMI 2 ~ M*~M "B for any second-order four- 
tensor M, | denotes the dyadic product of two four-vectors, the superscript 
t designates the transposed tensor, ~ - ~t~/0, the dagger denotes the adjoint 
(transposed and complex conjugated) spinor, 7" are the Dirac matrices, and 
k, e, and m are real constants. The Lagrangian ~QEO is a real relativistic- 
scalar field of x; for real fields A(x), it equals the usual Lagrangian of quantum 
electrodynamics up to a divergence term (Itzykson and Zuber, 1987). We are 
going to show how one can derive ~QEO from a particular transport-theoretic 
Lagrangian of Section 2 shifted with respect to a ground state, so that 
~ld = 0. 

To this end we assume that the state 

~d(X, p) = ~ ~,(X, p) ,] (3.2) 

where ~t/2 and ~ l  are complex, left-handed-spinor and four-vector fields of 
x, p ~ IR ~,3, respectively. In such a case, the ground state ~g(X, p) = (0, 
�9 gl(p)) t. We take the scalar product 

(,I,d[,I% -- (,I,,,~l,I,',,2),, ~ + ( v , l ' ~ h  

(a'I'tlI'tI/'~)l ~ Ipqt*(x, p ) '~ l (x ,  p) (3.3) 
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where for complex values of the four-momentum variable p = (pO, p), 

~1/2(x, p) ---- i[p ~ + p*'~]~l/2(x, -p* )  

�9 l(x, p) --- ~l(x, -p*)  

with 

(3.4) 

tpO + p3 pl _ ip2~ p2 + p'o" =- I + ip2 pO _ p3} (3.5) 

and the momentum total 

("( 
IeF(p ) ---- lira dy F(iy, p) d3p (3.6) 

R--~ J-R Jlpt2~R2-y 2 

for any function F(p) = F(p ~ p) such that the limit (3.6) exists, the values 
of ~(x ,  p) and ~)(x, p) for complex values of the four-momentum variable 
p being defined by analytic continuation of ~d(x, p) and ~}(x, p), p ~ IR 1,3. 
The definition (3.6) of the integral over the independent variable p is suggested 
by the standard, covariant, Euclidean definition of a four-momentum integral 
through the Wick rotation in momentum space, followed by symmetric inte- 
gration. For a fairly general class of states ~(x, p), one can show (Ribari~ and 
Su~ter~i~, 1995) that the scalar product (3.3) has the properties (2.6)-(2.11). 

The shifted transport-theoretic Lagrangian ~a depends on fields ~1/2(x, 
p) and qil(x, p) of 4 + 4 independent variables (the components of x and 
p), whereas the quantum electrodynamic Lagrangian ~QED depends on fields 
~(x) and A(x) of only 4 independent variables. So the crucial question is how 
to achieve this transition from a transport-theoretic Lagrangian with states 
of eight independent variables to a Lagrangian with states depending on just 
four of them. Taking a clue from the kinetic theory of gases, where in the 
strong-scattering asymptote as the mean free path tends to zero the gas 
exhibits everywhere the same Maxwellian distribution of velocities, we define 
an analogous strong-scattering asymptote to accomplish this reduction of 
dimensionality as follows: We assume that the interaction Lagrangian ~ i a (~ ;  
�9 g) depends on the gauge parameter k in such a way that in the strong- 
scattering asymptote k ~ 0 it tends to infinity unless the state 

{f,/z(p'p)[(--p'p)l/Z+L(X) .+,, i(p ~  p'o')~bR(x)]~ 
qta(X, p) = ~,(X, p) =- ~ fl(p'p)A(x) + f l(p'p)M(x)p J 

(3.7) 

where ~be(X ) and +R(X) are some complex, left- and right-handed spinor fields 
of x, respectively; A(x) and M(x) are some complex, four-vector and second- 
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rank four-tensor fields of x, respectively; andfl/2(y),fl(y), andf~(y) are certain 
complex functions of y E IR (but not of k) such that 

-'1 'rr2(~~ [fl/2(-- r) lZ dr > 0 
C112 ~ 4 J0 

Cl =- •  dr ~ 0 (3.8) 
4 J0 

(For what follows, there is actually no mathematical need to assume that the 
parameter that tends to zero in the strong-scattering asymptote is the same 
as the gauge parameter )~ in ~s but it saves introducing an additional 
parameter.) Since, by (2.12) and (3.3)-(3.6), the free Lagrangian ~f(~a,  V~d) 
is defined so that it does not depend on h, in the strong-scattering asymptote 
h ~ 0 the Lagrangian ~d(~d, Vxltd; qtg) and the corresponding action i[qt] 
defined by (1.1) both tend to infinity unless the state ~a(x, p) is of the form 
(3.7). We assume, therefore, that in the strong-scattering asymptote k ---) 0, 
only those states ~a(x, p) that are given by (3.7) contribute to the path integral 
(1.2); i.e., we assume that in the strong-scattering asymptote h ~ 0, in the 
functional integral (1.2) we need take account only of the states ~d(X, p) = 
qta(X, p). If SO, in the asymptote h --o 0, the physical system considered is 
described by the asymptotic Lagrangian ~ f (q t ,  V~I.ta) q- ~id(XI.r ~Itg), where: 

(A) By (3.2)-(3.8), the free Lagrangian 

~e(XIta, V~a) = ~t{c~f(M*V)'A - ClA*'(VM t) + icl/2t~'y~V~t~} (3.9) 

where qffx) is the complex bispinor field such that in the chiral representation 

+(x) = \+L(x)} (3.10) 

(B) Assumption (3.7) and the properties (i)-(v) in Section 2.2 of the 
interaction terms imply that ~2a [~3a, ~4] with qt a = qt a is such a sum of 
the second- [third-, fourth-] order products of qJ(x), A(x), and M(x) that is a 
real relativistic-scalar field of x. For our purpose we can assume, e.g., that 

I-=tlMI 2 
~2d(Xlta, ~ ;  Xltg) = -cl/2m~st~ - 2tl IMI 2 

+ (X + 1)lWr M[ 2] 

Y3d(qq, ~a, q'.; q'g) = --C~/2~ {e-+A~+ }, 

=~4d(aIta, ~tIfa, ~I'ta, ~a )  = 0 (3.11) 

Tr M is the trace of M and tl a real parameter different from zero. 
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If we assume that 

hM(x) = c~*(V | A)' (3.12) 

then the asymptotic transport-theoretic Lagrangian ~f(~a, V~a) + Ss 
q~g) as defined by (3.9)-(3.11) is equal to the quantum-electrodynamic 
Lagrangian ~QED, we set out to derive, up to the factor cl/2 and a diver- 
gence tenn. 

The physical significance of assumption (3.12), needed to derive terms 
quadratic in V | A such that are present in ~QED, is open. Relation (3.12) may 
be given a transport-theoretic interpretation, e.g., in the following three cases: 

(i) The four-vector component ~l(X, p) of any state ~d(X, p) must satisfy 
the covariant constraint 

(~gt(P)][P'V -- fc(P'p)][a'~l]b)l = 0 V a, b ~ IR 1'3 (3.13) 

where f~(y) is some real function of y E IR such that 

~fo~ )f~( r)f~( fo~ r)f,( c * ( - r  - - r )  dr = h * ( -  - r )  dr (3.14) 

for ~d = ~a, this constraint (3.13) reduces to (3.12). 
(ii) The four-vector component ~l(x, p) of any state ~d(X, p) satisfies 

a covariant generalization of Fick's first law 

�9 ~(x, p) - ~j(x, - p )  =ff(p'p)p'V[~l(X, p) + ~l(x, -p)]  (3.15) 

where ff(y) is some real function of y e IR (Ribad6 and Su~ter~ir, 1987); 
for ~l(X, p) = fl(p'p)A(x) + f[(p'p)M(x)p, relation (3.15) is equivalent to 
(3.12) provided ttff(y)f~(y) = c~f[(y). 

(iii) Like the free Lagrangian ~f(~ ,  V~), the interaction Lagrangian 
~id depends locally not only on the state ~d but also on its time-space 
derivative V~d. In such a case, it seems that one is allowed to assume (3.7) 
and (3.11) with M(x) replaced by C~tll(V | A) t. 

It does not seem possible to derive the quadratic, mass, and gauge terms 
of the quantum-electrodynamic Lagrangian ~QED if the shifted transport- 
theoretic Lagrangian ~f + ~id does not have a bilinear interaction term 
~2d(a'I'td, ~Itd, aI'tg). If we adopt the hypothesis (2.33) that the basic transport- 
theoretic Lagrangian ~s + ~i has no bilinear interaction term, then we have 
to conclude that the Lagrangian ~f  + ~s needed to obtain ~QED in the 
strong-scattering asymptote k ---> 0, is a result of some nonzero shift as 
defined by (2.24). Consequently: 

(i) We can expect that some of the symmetries exhibited by the basic 
Lagrangian ~f  + =~q~i will not be inherited by the shifted Lagrangian ~f  + 
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~id and, therefore, in the quantum electrodynamic Lagrangian ~QED, they 
will be explicitly broken. 

(ii) Quantum fields A(x) and t~(x) describe in the asymptote k --+ 0 the 
addition ~d(x, p) to the ground state ~g(X, p) = (0, xPgl)t. 

(iii) Since by (3.11) the spinor field ~1/2(x, p) acquires mass through 
interaction with the nonzero ground state ~g~(p) of four-vector field xlq(x, 
p), it is the electromagnetic ground state XlXgl(p) and the shift (2.24) of the 
Lagrangian Ss + ~i that, in the transport-theoretic interpretation of quantum 
electrodynamics, play a role analogous to that of the Higgs mechanism in 
the standard model (Cheng and Li, 1992). 

3.2. Scalar Electrodynamies 

Scalar electrodynamics, i.e., quantum electrodynamics of charged spin- 
zero particles, may be characterized by the Lagrangian 

~SQED ~ --11~7 (~ a - (V | a)t[ 2 - }[V.AI2 (3.16) 

+ [Vd~ + ieAd?]*.[V~b + ieAd#] - m2~b*qb -�88 2 

in which ~b(x) and A(x) are complex, scalar and four-vector fields of the time- 
space variable x e IR ~'3, and e, m, g, and h are real constants. The Lagrangian 
~SQED is a real relativistic-scalar field of x; for real fields A(x), it equals the 
conventional Lagrangian of scalar electrodynamics (Itzykson and Zuber, 
1987). 

Let us sketch how one can derive ~SQEO from a transport-theoretic 
Lagrangian ~f  + ~id of Section 2, if we assume that 

{.0(x, P)) (3.17) 
X 

V&(x, p) = \%(x, p) 

where ~0 and qq are complex, scalar and four-vector fields of x, p e IR ~'3, 
respectively; here, the ground state is ~g(X, p) = (~g0(P), XItgl(P)) t, and the 
scalar product is 

(Xltd[~)p ------ (e~176 1 + (~lxIt~)l with e ~ -= (1, 0, 0, 0) 

(3.18) 

We will consider a case where interaction terms ~2d(xltd, ~d; ~g), 5g3a(~d, 
~d, ~d; Xltg), and s Xltd, ~d, qtd) depend on the gauge parameter h in 
such a way that in the asymptote h --+ 0 the action (1.1) tends to infinity unless 

{fo(p'p)+(x) + f!(p'p)b(x)'p~ (3.19) 
~d(x, p) = Wa(X, p) =-- \f~(p'p)A(x) + f l(p'p)M(x)p ] 

where qb(x), b(x), A(x), and M(x) are some complex, scalar, four-vector, four- 
vector, and second-rank four-tensor fields of x, respectively; and f0(Y), 
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f~(Y), fl(Y), andfl(y), are certain complex functions of y E IR, independent 
of h and such that 

l~r2f ~ r 2 f ~ ( - r ) f j ( - r ) d r  :# 0, j = 0, 1 (3.20) c j - ~  Jo 

By (3.17)-(3.20), the free Lagrangian density ~f  does not depend on 
~, and 

~f(Wa, VWa) = f f~{cffb*.V,  - co~b*V.b + c*(M*V).A (3.21) 

- clA*.(VMt) } 

Suppose that, e.g., 

~E2d(q~a, Wa; Wg) = 2(1 + h)hlTr MI 2 - m2b*b 

~3d(Wa, Wa, ~a; Wg) = 2to~ {iec8l~b*'A) (3.22) 

,~4(~I?a, XIfa, XI-?a, Xt~ra) = eXlt~AI 2 - �88 z 

where to and h are two real parameters; and let 

tiM(x) = c~'(V | A) t and tob(x) = c~V~b(x) (3.23) 

In such a case, the asymptotic transport-theoretic Lagrangian ~f(Wa, V~Fa) 
+ ~id(XI'ta; Xtrg) with t o =" 21c012 and tl = -41cll 2 is equal to ~SQED up to a 
divergence term. There are transport-theoretic interpretations of constraints 
(3.23) analogous to those of (3.12). Due to the second constraint in (3.23), 
we were able to obtain the derivative coupling in "~SQED without having to 
assume that a derivative coupling is already present in the interaction part 
'~id of the transport-theoretic Lagrangian. 

To obtain transport-theoretic derivations of ~QED and of ~SQEO we have 
given explicit expressions for the free part SEe of the transport-theoretic 
Lagrangians needed, but only a few qualitative properties (2.14)-(2.17) of 
the interaction part ~i- It would be of interest to identify further properties 
that interaction parts ~gi of physically relevant transport-theoretic Lagrangians 
have to display. 

4. C O N C L U D I N G  R E M A R K S  

Presuming the Lagrangians of fundamental interactions in quantum field 
theories to be just asymptotic approximations to some underlying Lagrangian, 
we have considered the possibility that such an underlying Lagrangian is 
of the transport-theoretic kind, with the states ~(x, p) depending on eight 
independent variables (four components of the conventional space-time vari- 
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able x E IR L3 and four components of the four-momentum variable p 
IRl'3). In Section 3, we introduced the concept of the strong-scattering asymp- 
tote, where the gauge parameter k --9 0 and only particular states ~(x, p), 
which are products of the usual quantum mechanical fields of x and of certain 
functions of the four-momentum variable p, contribute to the path integral 
(1.2). We have also shown how one can interpret Lagrangians of quantum 
and scalar electrodynamics as describing some underlying transport-theoretic 
Lagrangians in the strong-scattering asymptote; also, the Lagrangians of 
non-Abelian gauge theories can be interpreted this way. According to this 
interpretation, by using the gauge parameter, regularizations, and renormaliza- 
tions in relativistic quantum field theories one is in effect simulating a post- 
ponement of a certain asymptotic approximation so as to derive proper, finite, 
asymptotic results implied by the underlying transport-theoretic Lagrangian. 

Within the transport-theoretic framework, a four-vector field may have 
a nonzero ground state (2.38) that does not depend on the time-space variable 
x and is an eigenvector of the Lorentz transformations. According to the 
given transport-theoretic interpretation of quantum electrodynamics, fermions 
acquire their mass through interaction with the electromagnetic ground state 
in the strong-scattering asymptote. Thus, within the transport-theoretic frame- 
work, interactions with nonzero ground states of vector bosons present an 
alternative to the Higgs mechanism of the standard model. So, if it turns out 
that we will give the scalar Higgs boson up since there will be no satisfactory 
experimental upper bound on its mass forthcoming, it might be worth consid- 
ering whether massless, vector-boson and fermion fields acquire mass by 
interaction with the ground states of vector bosons (fermions being absent 
from the ground state since spinor fields do not have a nonzero ground state). 

On the analogy of the kinetic theory of gases, we cannot expect that 
the concept of mass had any physical meaning immediately after the big 
bang when the state ~(x, p) was changing rapidly as a function of x and 
therefore could not be approximated by a sum Xltg(p) + ~a(x, p) of the ground 
and asymptotic states needed to transform the transport-theoretic Lagrangian 
into the conventional Lagrangian of the standard model that defines masses. 

Regarding the relation between gravitation and the transport-theoretic 
hypothesis that may be interpreted as attributing physical phenomena to an 
underlying motion and interaction of pointlike entities, we see two open ques- 
tions: 

(i) Can we apply the transport hypothesis to gravitation? 
(ii) Does the ground state or/and the said hypothetical pointlike entities 

exert some gravitational interaction? Have they anything to do with the so- 
called cold dark matter proposed as a way to explain the missing mass 
problem? 
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